Modul Geometrie Wintersemester 2008-2009

Schmale

29. Oktober 2008

Aufgaben

(7) Seien
$$a^{(0)} = \begin{bmatrix} 2\\1\\1\\2 \end{bmatrix}$$
, $a^{(1)} = \begin{bmatrix} 1\\1\\0\\2 \end{bmatrix}$, $a^{(2)} = \begin{bmatrix} 2\\0\\1\\1 \end{bmatrix}$, $a^{(3)} = \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix}$, $a^{(4)} = \begin{bmatrix} 2\\1\\0\\2 \end{bmatrix}$, $a^{(5)} = \begin{bmatrix} 1\\1\\1\\2 \end{bmatrix}$ in \mathbb{Q}^n .

- (a) Bestimmen Sie eine affine Basis des Verbindungsraumes Y (affine Hülle) der gegebenen Punkte.
- (b) Bestimmen Sie die affinen Koordinaten des Punktes $p = \begin{bmatrix} 4 \\ 3 \\ 3 \\ 4 \end{bmatrix}$ (3) aus Y bezüglich einer von Ihnen gewählten Basis von \overrightarrow{Y} .
- (c) Bestimmen Sie die baryzentrischen Koordinaten von p bezüglich der von Ihnen bestimmten affinen Basis von Y.
- (8) (a) Sei Y ein affiner Unterraum von \mathbb{R}^3 im Sinne der linearen Algebra, etwa Y=a+U mit $a\in\mathbb{R}^3$ und mit einem Untervektorraum U von \mathbb{R}^3 . Wir haben in der Vorlesung gesehen, dass (Y,U,φ) dann auch ein (allgemeiner) affiner Raum ist mit der Abbildung $\varphi:Y\times Y\to U, (p,q)\mapsto q-p$. Überlegen Sie, ob auch andere Abbildungen ψ statt φ in Frage kommen, bezüglich derer (Y,U,ψ) nach der Definition 2 im \S 1 der Vorlesung ein affiner Raum ist und formulieren Sie ausführlich Ihre Überlegungen und deren Ergebnisse.
 - (b) Seien $A, C \in \mathbb{R}^{2 \times 2}$ und $X = \{B \in \mathbb{R}^{2 \times 2} : AB = C\}$. Begründen Sie, warum X ein affiner Unterraum von $\mathbb{R}^{2 \times 2}$ ist.
 - (c) Ist für fest vorgegebenes $A \in \mathbb{R}^{2 \times 2}$ die Abbildung

$$f: \mathbb{R}^{2 \times 2} \longrightarrow \mathbb{R}^{2 \times 2}, \ B \mapsto (A+B)(A-B) + B^2$$

eine affine Abbildung?

Die jeweils gewählte Dimension und der gewählte Körper sollen in ein vertrautes Szenario führen, sind aber nicht wesentlich für die Anliegen der Aufgabenteile.

- (9) (a) Bei einer echten Dilatation ist das Bild einer Graden Γ eine zu Γ (strikt) parallele Grade. (4)
 - (b) Die Hintereinanderausführung zweier Dilatationen nach Beispiel 3(d) in § 2 ist wieder eine Dilatation.

 $^{^{(3)}}$ Auf dem in der Vorlesung verteilten Aufgabenblatt war versehentlich 2 als letzter Eintrag von p angegeben worden. Dann liegt p überhaupt nicht in Y, und es konnte dann entsprechend nur genau dieses nachgewiesen werden.

⁽⁴⁾ Zwei affine Unterräume Γ, Γ' heißen (schwach) parallel, wenn $\overrightarrow{\Gamma} \subseteq \overrightarrow{\Gamma'}$ oder $\overrightarrow{\Gamma'} \subseteq \overrightarrow{\Gamma}$ und (strikt) parallel, wenn = zutrifft. In der Literatur ist der Sprachgebrauch uneinheitlich.